Introduction to Deep Well Injection as a Disposal Option

Anna Feldman SCS Engineers October 10, 2024 AEF Convention

Injection Wells: What We'll Cover

• When is an injection well a good option to consider?

• How are environmentally safe injection wells built?

3

State-Specific Considerations

• What would an injection well project look like in Arkansas?

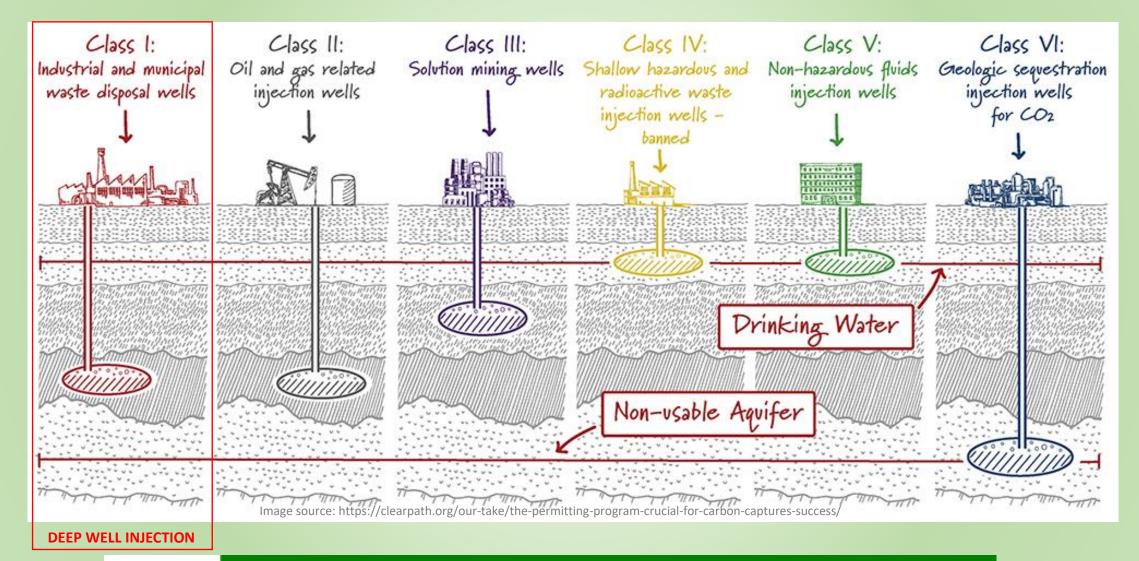
1

Background and Use Cases

- How are injection wells classified?
- What circumstances would make an injection well a good disposal option?

Definition

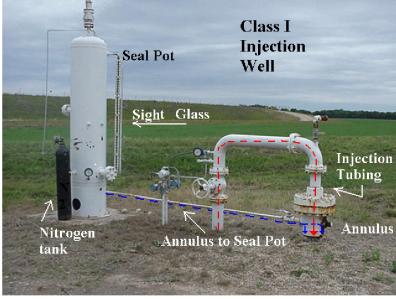
- Underground Injection: the technology of placing fluids underground through wells
 - Underground rock formations contain voids and pore space of varying size and connectivity
 - Varying capacity for fluid storage and flow
- Encompasses multiple types of projects...



History

- 1930s: First injection wells oil companies converting production wells
- 1940s: Steel industry disposal wells
- 1950s: Manufacturing disposal wells
- 1960s: Municipal wastewater disposal wells
- **1970s: EPA granted the authority to regulate underground injection** (part of the Safe Drinking Water Act)
- 1980s: EPA develops UIC (Underground Injection Control) program

2000s: Hydraulic fracturing excluded from UIC regulations in 2005; Carbon sequestration applications emerge


EPA Classifications

Wells that inject hazardous and non-hazardous waste beneath the lowermost formation containing an underground source of drinking water (USDW) within ¹/₄ mile of the well bore.

Injection Wells – EPA Classifications

Class I – Deep Well Injection

- Hazardous and nonhazardous wastewater
- 800+ permits nationwide
- Industry w/wastewater landfill leachate, municipal water treatment, power plants...
- Timeline for hypothetical Illinois well, feasibility to operation: ~20-38 mos
- Cost for hypothetical Illinois well: \$8-14.75M

Class VI – Carbon Sequestration

- Carbon dioxide
- 7 permits nationwide (~40 applications)
- Industry w/ captured emissions refineries, power plants...
- From feasibility to operation ~12-48 mos
- Cost ~ \$10-40M

Example: \$7 Million Zero-Discharge Facility

- Illinois site
- Completed 2019
- ROI: 9 months
- Rate: 10 million gallons/year
- Asset life design: 30 years
- Unit costs: <\$0.05/gallon

YR 1	 Studies: feasibility, siting, water balance \$30K
YR1	Permitting\$160K
YR2	Drill and complete well\$3M
YR2	 Complete pretreatment and pumping \$4M

Use Cases – Class I

Security/Permanence

- Protects surface and drinking water
- Constant amid changing regs and POTWs

Compliance

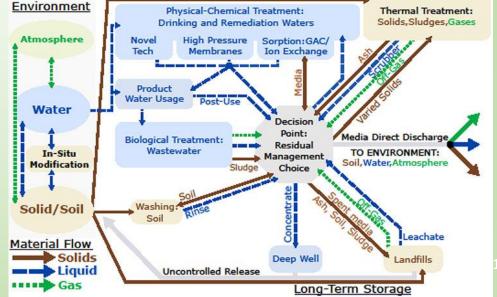
- Zero discharge
- Strict surface water discharge regs

If More Cost Effective than Alternatives

- Treatment
- Shipping/Hauling

E.G. Leachate, contaminated groundwater, industrial wastewater, municipal wastewater

Use Cases – Class VI


- Carbon Sequestration Incentives
- Grant opportunities
- High-CO2 Effluent Streams
- Carbon Capture and Storage

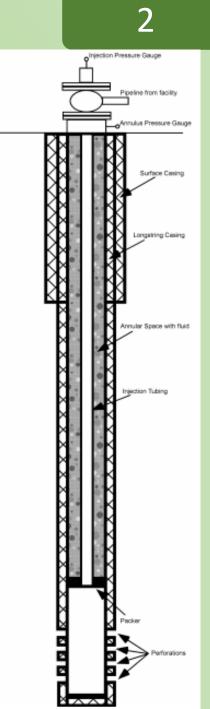
...For this presentation, focusing on Class I wells

Evolving Regulations - PFAS

- Per- and Polyfluoroalkyl Substances
- Difficult to break down/treat; residuals still challenging
- EPA working to create guidelines:
 - "...proactively prevent PFAS from entering air, land, and water at levels that can adversely impact human health and the environment"
- EPA identifies Class I injection wells as a favorable PFAS management option (March 2024 Interim Guidance on the Destruction and Disposal of PFAS)

2

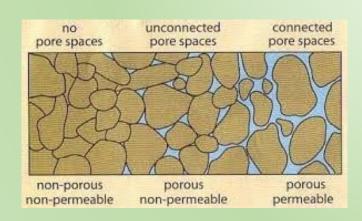
Research, Design, Monitoring

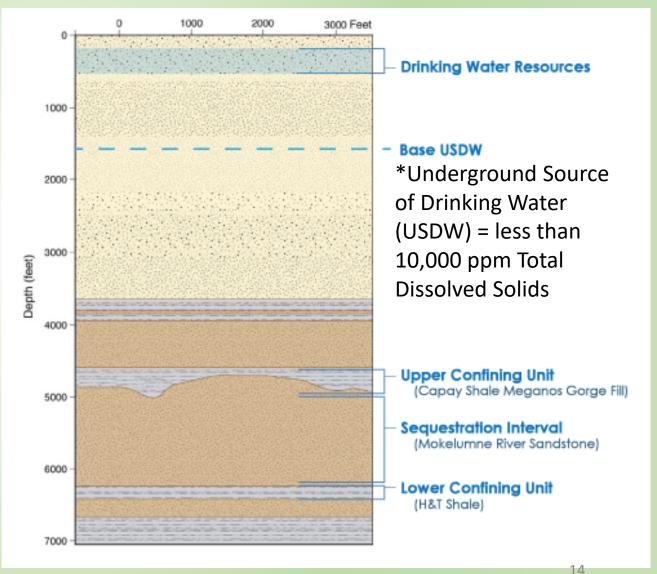

- What conditions make a site suitable for an injection well?
- How is an injection well constructed?
- Which factors are tested/monitored during a well's lifetime to confirm it is operating as intended?

- Siting Requirements (Geology)
- Multilayered Environmental Safeguards (Redundancy)
- Site selection for >20 year asset life

Factors that modern disposal methods consider to stay effective and environmentally safe

Siting an Injection Well


Suitable Geology: Thickness, Porosity and Permeability

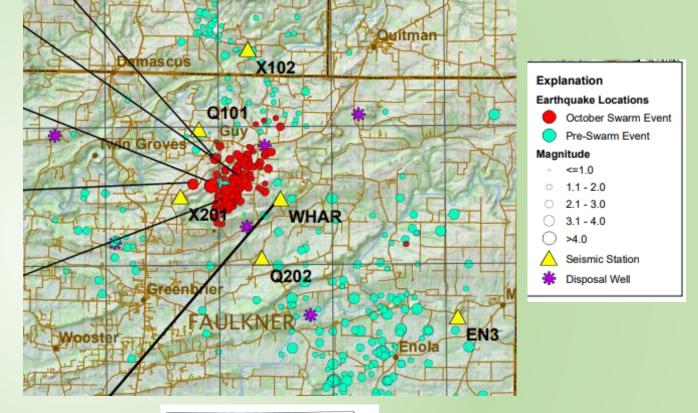

Injection Interval

- Formations with capacity to accept wastewater volumes
- Thick formations with high permeability

Confining Units

- Formations to prevent upward migration of fluid into protected aquifers
- Thick formations with low permeability

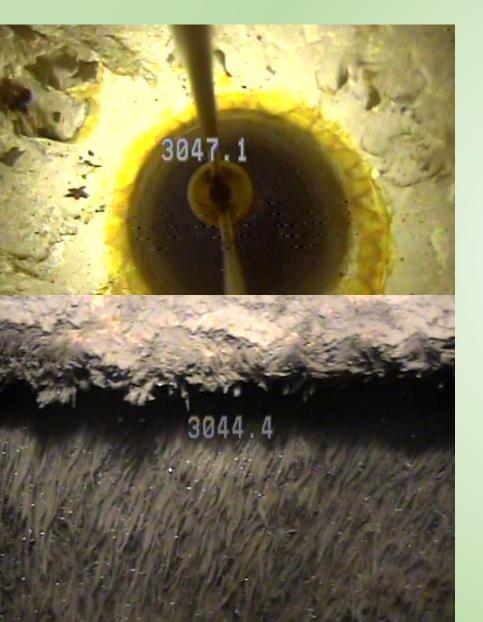
Siting an Injection Well

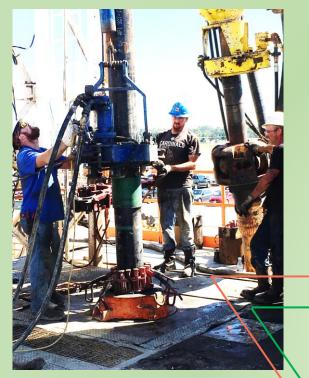

Suitable Geology: Pressures

Fluid interactions: Existing and Injected

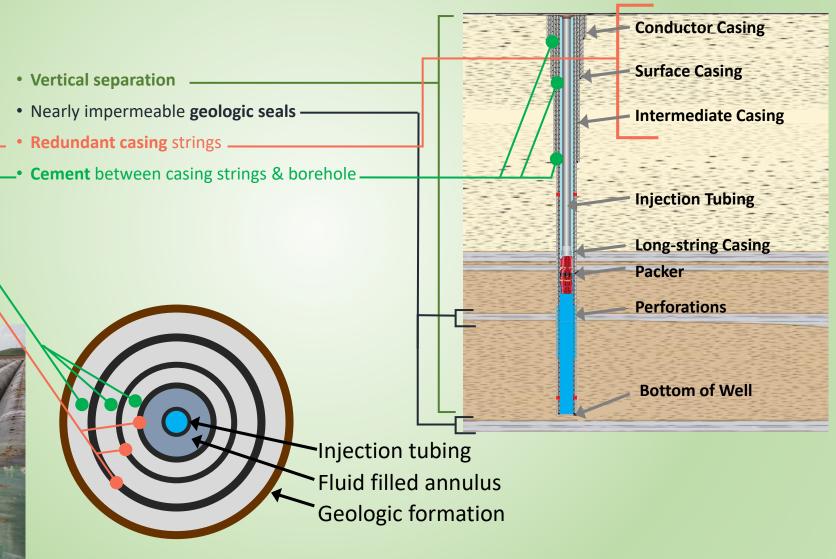
 Injection pressure should be maintained below a calculated maximum to prevent fracturing or fracture propagation

Faults and Seismicity


- Evaluate location regarding known faults and potential for injection rate and pressure to induce seismic activity
- **Current moratorium on Class II injection wells resulted from induced seismicity - Earthquake Swarm in 2010


15

Know Your Waste Stream



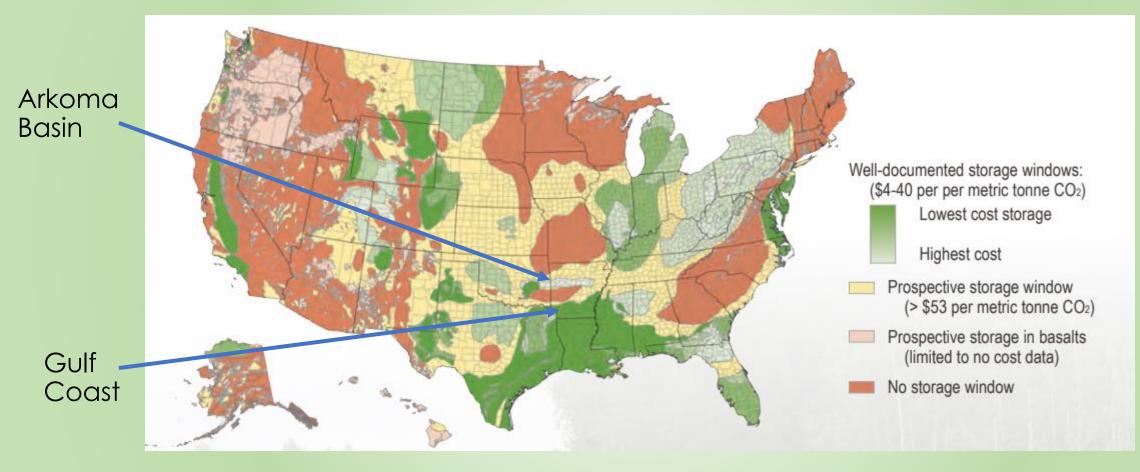
- How will waste stream chemistry interact with formation fluid chemistry?
- Accounting for chemical makeup → maintaining well integrity and keeping costs in line

Well Construction - Subsurface

Well Construction – Surface Design Factors

- Pump sizing (if gravity injection impossible)
 - 200-2000 gpm rate; 0-2000 psi pressure (dependent on reservoir characteristics)
- Pre-treatment
 - Filtration
 - Disinfection
 - Mass removal

Testing and Monitoring


- Periodic Testing:
 - Annulus pressure test
 - Measure pressure buildup in injection zones
 - Radioactive tracer test
 - Log testing for movement of fluid along borehole
 - Casing inspection logs
 - Annual Mechanical Integrity Tests
- Continuous monitoring: well pressures and flows
 - Injection tubing pressure
 - Annulus pressure
 - Flow rate
 - Injection volume
 - pH of injected fluids

- What formations in Arkansas have the potential for suitable injection interval geology?
- What steps take an injection well project from initiation to completion?

Potential Storage Areas – Not a Guarantee of Suitability!

Roads 2 Removal – Carbon dioxide sequestration (even more stringent regs) Only guarantee of suitability is an Approved Permit Application!

Gulf Coast Stratigraphy

								Woodbine Formation	Tuscaloosa Formation	Tuscaloosa Formation	Washita and Fredericksburg Formation, and James Limest
PA	SYSTEM	SERIES	GROUP	FORMATION	AGE (Ma) ¹		a Cenomani	an	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		C50490114 and C50490115 (Dee Seal: Grayson Shale and Del R
ERA	STSTEIVI			FORMATION			5	Bra Limestone	Buda Limestone	146 1.14	Washita Group Reservoir: Washita and Frederic
	Quaternary	Holocene Pleistocene	Alluvium Terraces		0.01 - Present 1.81-0.01			g urayson Shale / Del Rio Clay	Grayson Shale / Del Rio Clay	Washita Group Dantzler	Rusk Formation, and James Lime
		Prestocene	Jackson	Redfield	39.1-33.7			Kiamichi / Georgetown McKnight Formations Limestone	Georgetown Formation	Formation	of Pearsall Formation
		Eocene		White Bluff					Srou		Edwards, Glen Rose, and James
	Tertiary		Claiborne	Cockfield Cook Mountain Sparta Cane River	52.3-39.1		Albian	C Edwards Limestone Walnut Clay	Goodland / Edwards Limestones	Andrew Fredericksburg Formation Group	C50490113 Seal: Kiamichi Formation Reservoir: Edwards and Glen Ro James Limestone Member of Pe
			Wilcox	Wilcox	59.1-52.3			Paluxy Formation	Paluxy Formation	Paluxy Formation	Fredericksburg Group and Rusk
		Paleocene	Midway	Midway	61.5-59.1			w w Upper	Rusk Formation	Mooringsport Formation	C50490112 Seal: Kiamichi and McKnight For
				Arkadelphia		s		an Ros	Ferry Lake Anhydrite	Ferry Lake Anhydrite	Reservoir: Fredericksburg Group Formation
			Navarro	Nacatoch Saratoga	71-68	Cretaceous		풍.트 Lower	Rodessa Formation	Rodessa Formation	Rodessa Formation and James Li C50490110 and C50490111 (Deep)
			Taylor	Marlbrook Annona	· 2-71	č	Lower	Bexar Shale 5 Member	Bexar Shale 5 Member	Bexar Shale 5 Member	Seal: Ferry Lake Anhydrite Reservoir: Rodessa Formation an Limestone
	Upper Cretaceous	Gulfian		Ozan	1				dh matic	d la	
	opper createous	Guinan	Austin	Brownstown Tokio	87-82	sozoic	Aptian	James Limestone Member	James Limestone	Ali James Limestone Ali Member	/ Sligo and Hosston Formations and Group SAU C50490107 and C50490108 (Deep)
				Upper Tuscaloosa Middle Tuscaloosa 98-87		Me		E B Hommett Shale	Pine Island Shale	Pine Island Shale	Seal: Hammett Shale/Pine Island
			Tuscaloosa		98-87			Member	Member	- Member	of Pearsall Formation Reservoir: Sligo and Hosston For
				Lower Tuscaloosa				Sligo	Sligo	Sligo	Cotton Valley Group
		Comanchean	Marchiter and	Kiamichi			Formation	Formation	Formation		
			Washita and Ecododelecture	Goodland	107-99			- 2	- Ζ	Z	1
			Fredericksburg	Paluxy			Barremia	Hoset	Hosston Z Hosston Z	1/	
MESOZOIC				Mooringsport	109-107			rormation Z	Formation	Formation	/ Knowles and Winn Limestones a
	Lower Cretaceous			Ferry Lake Anhydrite	112-12		Hauterivi		<	< >	Sandstone (nonquantitative) SAU
			Trinity	Rodessa	114-112		Tiduterivi	unnamed shale unit	unnamed shale unit	unnamed shale unit	Seal: unnamed shale unit within I
				James 🗸	116-114						Hosston Formation-uppermost Co Reservoir: Knowles and Winn Lin
				Pine Island	118-116		Valangini	in			Calvin Sandstone
		Controller Manager	N	Sligo	110			unnamed shale unit	unnamed shale unit	unnamed shale unit	1
		Coahuila	Nuevo Leon	Hosston (Travis Peak)	-52-118		Berriasian	Knowles Ls / Calvin Ss	Knowles Ls / Winn Ls / Calvin Ss	Knowles Limestone	i
		Upper Jurassic	Cotton Valley	Schuler			Berriasia	Schuler	Schuler _ Dorcheat	= Dorcheat Volton	Haynesville Formation SAU
				Bossier	150-137			E Formation	Member	Member Valley	C50490105 and C50490106 (Deep
				Haynesville (Buckner			Tithonia	Bossier	Bossier Formation	Seal: Bossier Formation	
				Member)	154-150			Formation		Reservoir: Haynesville Formation	
	Jura ssic		Louark		450.454						/
				Smackover	159-154			Haynesville Formation /	Haynesville Formation / Gilmer Limestone Gilmer Limestone	/ Smackover Formation SAU	
				Norphlet	161-159	sic	Kimmerido	ian Gilmer Limestone		Gilmer Limestone	C50490103 and C50490104 (Deep) Seal: Buckner Member of Haynesville
		Middle Jurassic		Louann Salt	175-163	as	l a	<hr/>		Reservoir: Smackover Formation	
				Werner	176-175	3		S Buckner Mbr	Suckner Mbr Suckner Mbr		
	Triassic	Late Triassic		Eagle Mills	210-195						
	Conductor Data 1	Late Cambrian-	the difference is a set of the large		500.054			Smackover	Smackover	Smackover	Norphlet Formation SAU
ALEOZOIC	Cambrian-Permian	Permian	Undifferentiated Paleozoic		500-251		Oxfordia	Examplian	Formation	Formation	C50490101 and C50490102 (Deep Seal: Smackover Formation

Formations with Active Class I UIC Permits: Hosston, James, Smackover, Tokio

USGS CO2 Sequestration Map – Gulf Coast

AGS, Subsurface Stratigraphic Chart of South Arkansas

Stratigraphic column displaying the east-west distribution of the Upper Jurassic and Cretaceous geologic units within the U.S. Gulf Coast study area. Storage assessment units consist of a reservoir (red) and regional seal (blue). Wavy lines indicate unconformable contacts, and gray areas represent unconformities. Adapted from Nehring (1991), Salvador and Quezada-Muñeton (1991), Goldhammer and Johnson (2001), Witrock and others (2003), Sweezey and Sullivan (2004), Mancini and Puckett (2005), Warwick and others (2007), Mancini and others (2008b), Valentine and Dennen (2012), and Walker and others (2012).

Stratigraphic Unit

Central Gulf Coast

Eastern Gulf Coast

Global ostratigra Units

Western Gulf Coast

Storage Assessment Unit (SAU) Notes

Arkansas UIC Program

- ADEQ has primacy over Class I injection wells; conducts bimonthly inspections
- 7 active Class I injection well permits as of October 2024 – ADEQ database
- Active injection intervals range from 2500 to 8700 feet below ground surface
- Review timelines and costs vary from project to project

Components of a Project: Initiation to End-of-Life

Study & Permit	Pre-Treatment	Planning and	Construction	Operation and
Application	Design	Procurement		Maintenance
 Feasibility Study Begin conversation with regulators Specific cost estimate Site Characterization Area of Review Well Design Operations and Monitoring, Plugging and Abandonment Plans Financial Assurance ADEQ Submittal 	 Begin during Regulatory Review Pre-treatment design Refine pre- treatment cost estimates **IF NECESSARY** 	 Begin during Public Notice Period Refine construction cost estimates Construction planning Subcontractor selection Procurement 	 Site Preparation Injection Well Construction Testing Commissioning Application to Operate Public Notice & Hearing Receive Permit to Operate 	 System Start-up & Commissioning Compliance Testing, Monitoring and Reporting Financial Assurance Plugging and Abandonment

Public Notice and Reaction

- Two public notice periods required for Class I wells
 - When permit application submitted
 - When the Department informally decides whether to approve or deny the permit
- **Communication** with the public necessary to demonstrate environmental safety, defuse existing negative associations

3

In Conclusion...

- Injection wells: Disposal option for fluid waste streams that protects surface water and underground drinking water
- Technical Design Elements Key to Safety: **Geology**, **Chemistry**, **Testing and Monitoring**
- ADEQ UIC program regulates Class I injection wells and **state specific permitting process**

Thank you! Any questions?

Anna Feldman afeldman@scsengineers.com

SCS Engineers Injection Well Video Library